# Vapor Pressures of Methyl *tert*-Butyl Ether, Ethyl *tert*-Butyl Ether, Isopropyl *tert*-Butyl Ether, *tert*-Amyl Methyl Ether, and *tert*-Amyl Ethyl Ether

# M. A. Krähenbühl and J. Gmehling\*

Technische Chemie, FB 9, Carl von Ossietzky, Universität Oldenburg, Postfach 2503, D-26111 Oldenburg, FRG

The vapor pressures of methyl *tert*-butyl ether, ethyl *tert*-butyl ether, isopropyl *tert*-butyl ether, *tert*amyl methyl ether, and *tert*-amyl ethyl ether were measured by ebulliometry or the static method in the pressure ranges 14-102 and 3-835 kPa (methyl *tert*-butyl ether), respectively. The data were correlated using the Antoine and Wagner equations. The experimental data of methyl *tert*-butyl ether and ethyl *tert*-butyl ether were compared with data available in the literature.

## Introduction

Vapor pressures are most important for the design of rectification processes. They are also used for the calculation of phase equilibria using  $g^{\rm E}$  models or group contribution methods and to derive the required enthalpy of vaporizations using the Clausius-Clapeyron equation. Ambrose et al. (1) have published reliable vapor pressures for some ethers. For ethers used as gasoline additives only a limited number of vapor pressure measurements are available. With a view to the synthesis and design of processes for reactive distillation, vapor pressure data for methyl *tert*-butyl ether (MTBE), ethyl *tert*-butyl ether (ETBE), isopropyl *tert*-butyl ether (IPTBE), *tert*-amyl methyl ether (TAME), and *tert*-amyl ethyl ether (TAEE) have been measured.

#### Apparatus

The ethers were obtained from the different suppliers indicated in Table 1 with purities between 92 and 97%. They were purified by washing several times with bidistilled water to remove the alcohols, dryed with molecular sieves 4A, and distilled at low pressure. After the purification steps the purities given in Table 1 were obtained by GLC analysis. The normal boiling points available in the literature for some of these ethers are also presented in Table 1 for comparison with the boiling points obtained in this work from eq 1 and the constants given in Table 3.

The vapor pressure measurements were carried out with ebulliometers of the Eckert type connected in series to the same pressure controller. A manometer filled with mercury was used to read the absolute pressure by means of a Digimatic Scale Unit. The temperatures in the two ebulliometers were read from a quartz thermometer connected to a microcomputer for automatic recording of the temperatures. The thermometers were calibrated at the triple point of water. A detailed description of the apparatus has been given by Dallinga et al. (2).

The measurements of the vapor pressure of MTBE were done by a static method described by Kolbe and Gmehling (3). That method allowed measurements above atmospheric pressure up to 835 kPa, corresponding to the maximum temperature that could be read.

The accuracy of temperature measurements is estimated to be  $\pm 0.01$  K. The accuracy of pressure measurements is  $5.00 + 0.01P_i^s$  Pa for the static apparatus and  $1.00 + 0.01P_i^s$  Pa for the dynamic apparatus.

### **Results and Discussion**

Temperatures measured on IPTS-68 were converted to ITS-90. The results are given in Table 2. The coefficients of the equations fitted to the experimental vapor pressures are given in Tables 3 and 4. The equations used for the correlation are the Antoine equation (4) (Table 3)

$$\log(P_i^{s}/kPa) = A + \frac{B}{(T/K) + C}$$
(1)

and the Wagner equation (5) (Table 4) in the form

$$\ln(P_{\rm r}^{\rm s}) = (a\tau + b\tau^{1.5} + c\tau^{2.5} + d\tau^{5.0})/T_{\rm r}$$
(2)

In these equations  $P_i^s$  is the vapor pressure, T the absolute temperature,  $P_r^s$  the reduced vapor pressure equal to  $P_i^s/P_c$  ( $P_c$  = critical pressure),  $T_r$  the reduced temperature equal to  $T/T_c$  ( $T_c$  = critical temperature),  $\tau = (1 - T_r)$ , and A, B, C, a, b, c, and d are adjustable coefficients.

The critical temperatures for the substances for which no experimental values were available were estimated by the Joback (6) and Ambrose (7, 8) methods. For further processing, an average value was used. Ambrose (5) has

Table 1. Purities, Normal Boiling Points  $(T_B)$  at 101.325kPa, and Published Data

| substance/supplier                    | purity/(mol %) | $T_{\rm B}/{\rm K}~({\rm obtained})$ | $T_{\rm B}/{\rm K}({\rm lit.})$          |
|---------------------------------------|----------------|--------------------------------------|------------------------------------------|
| MTBE/Hüls AG, Marl, FRG               | 99.99          | 328.32                               | $328.15,^a 328.21,^b 328.31,^c 328.55^d$ |
| ETBE/Veba Öl AG, Gelsenkirchen, FRG   | 99.90          | 345.86                               | 346.06 <sup>e</sup>                      |
| IPTBE/Veba Öl AG                      | 99.82          | 360.43                               |                                          |
| TAME/EC Erdölchemie GmbH, Köln, FRG   | 99.96          | 359.39                               | $359.26^{f} 359.45^{g} 359.58^{h}$       |
| TAEE/Phillips Petroleum Co., Oklahoma | 99.95          | 374.70                               | . ,                                      |

<sup>a</sup> Reference 14. <sup>b</sup> Reference 11. <sup>c</sup> Reference 15. <sup>d</sup> Reference 16. <sup>e</sup> Reference 12. <sup>f</sup> Reference 17. <sup>g</sup> Reference 18. <sup>h</sup> Reference 19.

0021-9568/94/1739-0759\$04.50/0 © 1994 American Chemical Society

| Table 2. Experiments | l Vapor | Pressures | and | <b>Deviations</b> <sup>a</sup> |
|----------------------|---------|-----------|-----|--------------------------------|
|----------------------|---------|-----------|-----|--------------------------------|

|  | $T/\mathrm{K}$                                                                                                                                                                                                                                                                                                                         | P <sub>i</sub> s/kPa                                                                                                                                                                                                                                                                                      | $\frac{\Delta P_{i}^{s/2}}{I}$                                                                                                                                                                    | 'Pa<br>II                                                                                                                                                                                      | T/K                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $P_{\rm i}^{\rm s}/{ m kPa}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $\frac{\Delta P_{i}^{s}}{I}$                                                                                         | Pa<br>II                                                                                                                                                                                                                   | T/K                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $P_{i}$ s/kPa                                                                                                                                                                                                                                                                                                                              | $\frac{\Delta P_{i^{s}}}{I}$                                                                                                                                                                              | P/Pa<br>II                                                                                                                                                                                                    |
|--|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|  | 300.956<br>304.397<br>307.896<br>312.707<br>318.586<br>323.633<br>323.666<br>328.498<br>328.528<br>333.386<br>338.224<br>338.229<br>342.570<br>342.592<br>342.652<br>342.652<br>347.361<br>347.367<br>347.367<br>347.370<br>352.709<br>352.710<br>352.710<br>357.672<br>357.676<br>357.676<br>357.676<br>357.676<br>352.550<br>362.550 | 37.417<br>42.944<br>49.188<br>58.733<br>72.841<br>86.748<br>86.855<br>102.046<br>102.133<br>119.445<br>119.444<br>138.873<br>138.893<br>138.905<br>158.286<br>158.403<br>158.699<br>182.115<br>182.115<br>182.115<br>182.115<br>182.174<br>211.877<br>242.734<br>242.757<br>242.778<br>276.190<br>276.170 | $\begin{array}{r} -96\\ -51\\ -24\\ -182\\ 59\\ 99\\ 109\\ 132\\ 119\\ 137\\ 140\\ 150\\ 149\\ 148\\ 98\\ 111\\ 125\\ 82\\ 87\\ 93\\ 94\\ 48\\ 42\\ 18\\ 28\\ 25\\ 20\\ -104\\ -95\\ \end{array}$ | $\begin{array}{r} 34\\ 50\\ 46\\ -158\\ 28\\ 24\\ 34\\ 22\\ 9\\ 1\\ 4\\ 2\\ 2\\ 1\\ 0\\ -48\\ -34\\ -21\\ -51\\ -45\\ -34\\ -39\\ -45\\ -39\\ -45\\ -11\\ -1\\ -4\\ -9\\ -62\\ -53\end{array}$ | $\begin{array}{r} 362.544\\ 362.542\\ 362.542\\ 366.959\\ 366.959\\ 366.993\\ 367.285\\ 367.285\\ 367.285\\ 367.285\\ 367.285\\ 371.791\\ 371.834\\ 371.827\\ 371.834\\ 376.775\\ 376.775\\ 376.775\\ 376.775\\ 376.775\\ 381.877\\ 381.877\\ 381.877\\ 381.877\\ 386.469\\ 386.469\\ 386.469\\ 386.468\\ 386.468\\ 386.476\\ 386.476\\ 386.478\\ 386.478\\ 386.478\\ 386.478\\ 386.478\\ 386.478\\ 386.478\\ 386.478\\ 386.478\\ 386.478\\ 386.478\\ 386.478\\ 386.478\\ 386.478\\ 386.478\\ 386.478\\ 386.478\\ 386.478\\ 386.478\\ 386.478\\ 386.478\\ 386.478\\ 386.478\\ 386.478\\ 386.478\\ 386.478\\ 386.478\\ 386.478\\ 386.478\\ 386.478\\ 386.478\\ 386.478\\ 386.478\\ 386.478\\ 386.478\\ 386.478\\ 386.478\\ 386.478\\ 386.478\\ 386.478\\ 386.478\\ 386.478\\ 386.478\\ 386.478\\ 386.478\\ 386.478\\ 386.478\\ 386.478\\ 386.478\\ 386.478\\ 386.478\\ 386.478\\ 386.478\\ 386.478\\ 386.478\\ 386.478\\ 386.478\\ 386.478\\ 386.478\\ 386.478\\ 386.478\\ 386.478\\ 386.478\\ 386.478\\ 386.478\\ 386.478\\ 386.478\\ 386.478\\ 386.478\\ 386.478\\ 386.478\\ 386.478\\ 386.478\\ 386.478\\ 386.478\\ 386.478\\ 386.478\\ 386.478\\ 386.478\\ 386.478\\ 386.478\\ 386.478\\ 386.478\\ 386.478\\ 386.478\\ 386.478\\ 386.478\\ 386.478\\ 386.478\\ 386.478\\ 386.478\\ 386.478\\ 386.478\\ 386.478\\ 386.478\\ 386.478\\ 386.478\\ 386.478\\ 386.478\\ 386.478\\ 386.478\\ 386.478\\ 386.478\\ 386.478\\ 386.478\\ 386.478\\ 386.478\\ 386.478\\ 386.478\\ 386.478\\ 386.478\\ 386.478\\ 386.478\\ 386.478\\ 386.478\\ 386.478\\ 386.478\\ 386.478\\ 386.478\\ 386.478\\ 386.478\\ 386.478\\ 386.478\\ 386.478\\ 386.488\\ 386.478\\ 386.488\\ 386.488\\ 386.488\\ 386.488\\ 386.488\\ 386.488\\ 386.488\\ 386.488\\ 386.488\\ 386.488\\ 386.488\\ 386.488\\ 386.488\\ 386.488\\ 386.488\\ 386.488\\ 386.488\\ 386.488\\ 386.488\\ 386.488\\ 386.488\\ 386.488\\ 386.488\\ 386.488\\ 386.488\\ 386.488\\ 386.488\\ 386.488\\ 386.488\\ 386.488\\ 386.488\\ 386.488\\ 386.488\\ 386.488\\ 386.488\\ 386.488\\ 386.488\\ 386.488\\ 386.488\\ 386.488\\ 386.488\\ 386.488\\ 386.488\\ 386.488\\ 386.488\\ 386.488\\ 386.488\\ 386.488\\ 386.488\\ 386.488\\ 386.488\\ 386.488\\ 386.488\\ 386.488\\ 386.488\\ 386.488\\ 386.488\\ 386.488\\ 386.488\\ 386.488\\ 386.488\\ 386.488\\ 386.488\\ 386.488\\ 386.488\\ 386.488\\ 386.488\\ 386.488\\ 386.488\\ 386.4$ | $\begin{array}{r} \mbox{Methyl tert-B} \\ 276.128 \\ 276.128 \\ 276.128 \\ 309.586 \\ 309.586 \\ 309.586 \\ 309.622 \\ 312.027 \\ 312.162 \\ 312.282 \\ 349.410 \\ 349.639 \\ 349.717 \\ 349.639 \\ 349.717 \\ 349.639 \\ 349.265 \\ 394.265 \\ 394.265 \\ 394.231 \\ 394.199 \\ 394.147 \\ 444.696 \\ 444.696 \\ 444.696 \\ 444.698 \\ 444.722 \\ 494.239 \\ 494.239 \\ 494.239 \\ 494.239 \\ 494.239 \\ 494.239 \\ 494.239 \\ 494.244 \\ 494.099 \\ 494.127 \\ 494.169 \\ 555.377 \\ 552.755 \end{array}$ | $\begin{array}{r} \hline \\ \hline $ | $\begin{array}{c} -59\\ -66\\ -61\\ 101\\ 118\\ 103\\ 136\\ 113\\ 154\\ 125\\ 121\\ 121\\ 125\\ 121\\ 121\\ 125\\ -58\\ -62\\ -38\\ -52\\ -48\\ -65\\ -62\\ -38\\ 25\\ 25\\ 16\\ -194\\ -188\\ -180\\ -192\\ 1\end{array}$ | $\begin{array}{c} 391.469\\ 391.462\\ 391.462\\ 391.457\\ 396.436\\ 396.431\\ 396.419\\ 396.419\\ 396.419\\ 396.419\\ 396.419\\ 396.405\\ 401.997\\ 402.002\\ 402.015\\ 402.015\\ 402.015\\ 402.015\\ 402.016\\ 402.015\\ 402.016\\ 402.016\\ 402.016\\ 406.172\\ 406.174\\ 406.174\\ 406.174\\ 406.174\\ 406.177\\ 411.235\\ 411.232\\ 411.232\\ 411.232\\ 411.232\\ 411.232\\ 411.232\\ 411.232\\ 411.232\\ 411.232\\ 411.232\\ 411.232\\ 411.232\\ 411.232\\ 411.232\\ 411.232\\ 411.232\\ 411.232\\ 411.232\\ 411.232\\ 411.232\\ 411.232\\ 411.232\\ 411.232\\ 411.232\\ 411.232\\ 411.232\\ 411.232\\ 411.232\\ 411.232\\ 411.232\\ 411.232\\ 411.232\\ 411.232\\ 411.232\\ 411.232\\ 411.232\\ 411.232\\ 411.232\\ 411.232\\ 411.232\\ 411.232\\ 411.232\\ 411.232\\ 411.232\\ 411.232\\ 411.232\\ 411.232\\ 411.232\\ 411.232\\ 411.232\\ 411.232\\ 411.232\\ 411.232\\ 411.232\\ 411.232\\ 411.232\\ 411.232\\ 411.232\\ 411.232\\ 411.232\\ 411.232\\ 411.232\\ 411.232\\ 411.232\\ 411.232\\ 411.232\\ 411.232\\ 411.232\\ 411.232\\ 411.232\\ 411.232\\ 411.232\\ 411.232\\ 411.232\\ 411.232\\ 411.232\\ 411.232\\ 411.232\\ 411.232\\ 411.232\\ 411.232\\ 411.232\\ 411.232\\ 411.232\\ 411.232\\ 411.232\\ 411.232\\ 411.232\\ 411.232\\ 411.232\\ 411.232\\ 411.232\\ 411.232\\ 411.232\\ 411.232\\ 411.232\\ 411.232\\ 411.232\\ 411.232\\ 411.232\\ 411.232\\ 411.232\\ 411.232\\ 411.232\\ 411.232\\ 411.232\\ 411.232\\ 411.232\\ 411.232\\ 411.232\\ 411.232\\ 411.232\\ 411.232\\ 411.232\\ 411.232\\ 411.232\\ 411.232\\ 411.232\\ 411.232\\ 411.232\\ 411.232\\ 411.232\\ 411.232\\ 411.232\\ 411.232\\ 411.232\\ 411.232\\ 411.232\\ 411.232\\ 411.232\\ 411.232\\ 411.232\\ 411.232\\ 411.232\\ 411.232\\ 411.232\\ 411.232\\ 411.232\\ 411.232\\ 411.232\\ 411.232\\ 411.232\\ 411.232\\ 411.232\\ 411.232\\ 411.232\\ 411.232\\ 411.232\\ 411.232\\ 411.232\\ 411.232\\ 411.232\\ 411.232\\ 411.232\\ 411.232\\ 411.232\\ 411.232\\ 411.232\\ 411.232\\ 411.232\\ 411.232\\ 411.232\\ 411.232\\ 411.232\\ 411.232\\ 411.232\\ 411.232\\ 411.232\\ 411.232\\ 411.232\\ 411.232\\ 411.232\\ 411.232\\ 411.232\\ 411.232\\ 411.232\\ 411.232\\ 411.232\\ 411.232\\ 411.232\\ 411.232\\ 411.232\\ 411.232\\ 411.232\\ 411.232\\ 411.232\\ 411.232\\ 411.232\\ 411.232\\ 411.232\\ 411.232\\ 411.232\\ 411.232\\ 411.232\\ 411.232\\ 411.232\\ 411.2$ | $\begin{array}{c} 552.645\\ 552.567\\ 552.515\\ 615.633\\ 615.571\\ 615.485\\ 615.415\\ 615.445\\ 615.243\\ 692.608\\ 692.608\\ 692.608\\ 692.608\\ 692.804\\ 692.804\\ 692.804\\ 692.804\\ 692.804\\ 692.804\\ 692.784\\ 692.792\\ 754.575\\ 754.610\\ 754.635\\ 754.647\\ 754.685\\ 835.491\\ 835.431\\ 835.431\\ 835.451\\ \end{array}$ | $\begin{array}{c} -333\\ -326\\ -334\\ -317\\ -252\\ -248\\ -242\\ -246\\ -234\\ -233\\ 220\\ 248\\ 171\\ 144\\ 153\\ 132\\ 349\\ 353\\ 376\\ 390\\ 383\\ 977\\ 989\\ 989\\ 983\\ 967\\ 1003 \end{array}$ | $\begin{array}{c}1\\9\\0\\17\\-37\\-33\\-27\\-31\\-19\\-18\\158\\185\\107\\80\\90\\89\\68\\-53\\-49\\-26\\-12\\-20\\-31\\-19\\-25\\-41\\-5\end{array}$                                                        |
|  |                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                   |                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                      |                                                                                                                                                                                                                            | abs me                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | an deviations:                                                                                                                                                                                                                                                                                                                             | 242                                                                                                                                                                                                       | 56                                                                                                                                                                                                            |
|  | 305.552<br>306.951<br>308.714<br>309.523<br>311.248<br>312.893<br>314.412<br>314.783                                                                                                                                                                                                                                                   | $\begin{array}{c} 23.264\\ 24.641\\ 26.502\\ 27.394\\ 29.403\\ 31.401\\ 33.325\\ 33.848\end{array}$                                                                                                                                                                                                       | 35<br>-6<br>-12<br>3<br>-10<br>-40<br>-9                                                                                                                                                          | $\begin{array}{r} 33\\ 3\\ -9\\ -15\\ -1\\ -15\\ -46\\ -15\end{array}$                                                                                                                         | 314.862<br>316.979<br>317.198<br>318.893<br>322.770<br>323.651<br>326.709<br>328.761                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Ethyl tert-Bu<br>33.996<br>36.843<br>37.205<br>39.774<br>45.905<br>47.557<br>53.209<br>57.161                                                                                                                                                                                                                                                                                                                                                                                                               | utyl Ether <sup>c</sup><br>33<br>-47<br>0<br>64<br>-48<br>81<br>129<br>34                                            | $27 \\ -55 \\ -9 \\ 54 \\ -62 \\ 66 \\ 110 \\ 13$                                                                                                                                                                          | 330.257<br>333.401<br>336.438<br>339.135<br>341.283<br>343.620<br>345.802<br>345.823<br>abs met                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 60.236<br>67.196<br>74.498<br>81.543<br>87.437<br>94.330<br>101.127<br>101.214<br>an deviations:                                                                                                                                                                                                                                           | $5 \\ 3 \\ -13 \\ 17 \\ -44 \\ -12 \\ 1 \\ 22 \\ 29$                                                                                                                                                      | $-16 \\ -19 \\ -33 \\ 1 \\ -53 \\ -11 \\ 14 \\ 35 \\ 29$                                                                                                                                                      |
|  |                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                   |                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Isopropyl tert-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Butyl Ether                                                                                                          | «                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                           | 100                                                                                                                                                                                                           |
|  | $\begin{array}{c} 306.719\\ 306.718\\ 307.552\\ 309.337\\ 309.366\\ 311.361\\ 311.383\\ 313.032\\ 313.048\\ 314.658\\ 314.679\\ 316.504\\ 316.569\\ 317.558 \end{array}$                                                                                                                                                               | $\begin{array}{c} 14.260\\ 14.260\\ 14.791\\ 14.791\\ 16.013\\ 16.013\\ 17.452\\ 17.452\\ 17.452\\ 18.752\\ 20.057\\ 20.057\\ 20.057\\ 21.709\\ 21.709\\ 22.699 \end{array}$                                                                                                                              | $10 \\ 10 \\ -3 \\ 4 \\ 21 \\ -3 \\ -20 \\ 9 \\ -4 \\ -12 \\ -30 \\ 43 \\ -15 \\ 76$                                                                                                              | $\begin{array}{c} 0 \\ 0 \\ -12 \\ -5 \\ 14 \\ -6 \\ -7 \\ -24 \\ 7 \\ -6 \\ -13 \\ -30 \\ 44 \\ -14 \\ 78 \end{array}$                                                                        | $\begin{array}{c} 317.647\\ 317.747\\ 319.550\\ 321.590\\ 321.631\\ 327.781\\ 327.705\\ 330.206\\ 330.262\\ 332.334\\ 332.377\\ 336.391\\ 336.497\\ 340.327\\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $\begin{array}{c} 22.699\\ 22.773\\ 24.515\\ 24.515\\ 26.607\\ 26.607\\ 33.784\\ 33.784\\ 37.038\\ 37.038\\ 40.030\\ 40.030\\ 40.030\\ 46.426\\ 46.426\\ 53.149\end{array}$                                                                                                                                                                                                                                                                                                                                 | -6<br>-26<br>10<br>-22<br>3<br>-41<br>48<br>81<br>28<br>-49<br>5<br>-58<br>112<br>-62<br>8                           |                                                                                                                                                                                                                            | $\begin{array}{c} 340.405\\ 343.735\\ 343.706\\ 346.889\\ 346.953\\ 350.254\\ 350.251\\ 352.774\\ 355.2843\\ 355.510\\ 355.584\\ 357.712\\ 360.603\\ 360.571 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $\begin{array}{c} 53.149\\ 59.600\\ 59.600\\ 66.401\\ 66.401\\ 73.929\\ 73.929\\ 80.257\\ 80.257\\ 80.257\\ 87.409\\ 93.324\\ 101.860\\ 101.860\\ \end{array}$                                                                                                                                                                             | $\begin{array}{r} -135 \\ -75 \\ -75 \\ -17 \\ 129 \\ -11 \\ -2 \\ 5 \\ 150 \\ -25 \\ 145 \\ -55 \\ -53 \\ -45 \\ 52 \end{array}$                                                                         | $     \begin{array}{r}       -139 \\       -82 \\       -24 \\       118 \\       -22 \\       -16 \\       -9 \\       135 \\       -40 \\       130 \\       -70 \\       -55 \\       42     \end{array} $ |
|  |                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                   |                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                      |                                                                                                                                                                                                                            | abs me                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | an deviations:                                                                                                                                                                                                                                                                                                                             | 39                                                                                                                                                                                                        | 40                                                                                                                                                                                                            |
|  | 306.236<br>306.258<br>308.654<br>309.323<br>309.330<br>313.237<br>313.256<br>317.304<br>317.307                                                                                                                                                                                                                                        | $14.544\\14.544\\16.153\\16.153\\16.694\\19.683\\19.683\\23.285\\23.285\\23.285$                                                                                                                                                                                                                          | $-17 \\ -31 \\ -29 \\ -42 \\ 38 \\ 33 \\ 19 \\ 3 \\ 40 \\ 37$                                                                                                                                     | -32<br>-47<br>-54<br>27<br>22<br>14<br>-1<br>42<br>39                                                                                                                                          | 320.272<br>320.263<br>323.735<br>323.710<br>326.308<br>326.280<br>330.840<br>330.853<br>331.019<br>332.949                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | <i>tert</i> -Amyl Me<br>26.201<br>29.957<br>33.058<br>33.058<br>39.176<br>39.369<br>42.275                                                                                                                                                                                                                                                                                                                                                                                                                  | $\begin{array}{c} \text{Ether}^{\circ} \\ 20 \\ 30 \\ -22 \\ 7 \\ -24 \\ 11 \\ 0 \\ -18 \\ -64 \\ -28 \end{array}$   | 27<br>36<br>-11<br>18<br>-10<br>26<br>20<br>1<br>-45<br>-8                                                                                                                                                                 | $\begin{array}{c} 335.479\\ 339.768\\ 342.786\\ 346.151\\ 349.527\\ 352.385\\ 354.389\\ 356.219\\ 359.252\end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $\begin{array}{r} 46.280\\ 53.739\\ 59.653\\ 66.750\\ 74.535\\ 81.674\\ 86.915\\ 92.039\\ 101.076\end{array}$                                                                                                                                                                                                                              | $   \begin{array}{r}     -38 \\     -79 \\     -2 \\     2 \\     14 \\     26 \\     -45 \\     -6 \\     90 \\   \end{array} $                                                                          | -17 -59 15 14 18 20 -59 -29 49                                                                                                                                                                                |
|  |                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                   |                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                      |                                                                                                                                                                                                                            | abs me                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | an deviations:                                                                                                                                                                                                                                                                                                                             | 28                                                                                                                                                                                                        | 27                                                                                                                                                                                                            |
|  | 319.901<br>319.889<br>323.578<br>327.151<br>327.151<br>331.129<br>331.116<br>334.377<br>334.346<br>340.480                                                                                                                                                                                                                             | $\begin{array}{c} 14.657\\ 14.657\\ 17.131\\ 17.131\\ 19.833\\ 23.235\\ 23.235\\ 26.365\\ 26.365\\ 26.365\\ 33.160\\ \end{array}$                                                                                                                                                                         | $ \begin{array}{r} -11 \\ -4 \\ -1 \\ 27 \\ -7 \\ -5 \\ -15 \\ -4 \\ -10 \\ 21 \\ 0 \\ \end{array} $                                                                                              | $\begin{array}{c} -23 \\ -9 \\ 19 \\ -11 \\ -9 \\ -16 \\ -4 \\ -8 \\ 23 \\ 6 \end{array}$                                                                                                      | $\begin{array}{c} 340.481\\ 345.466\\ 345.511\\ 350.121\\ 350.121\\ 354.306\\ 354.275\\ 357.763\\ 357.723\\ 361.077\\ 361.036\\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | tert-Amyl Et<br>33.160<br>39.759<br>39.759<br>46.664<br>46.664<br>53.696<br>53.696<br>60.154<br>60.154<br>66.916<br>66.916                                                                                                                                                                                                                                                                                                                                                                                  | thyl Ether <sup>c</sup><br>-1<br>72<br>8<br>9<br>-7<br>-57<br>-2<br>-70<br>8<br>-76<br>11                            | $\begin{array}{r} 4\\79\\15\\16\\0\\-52\\4\\-66\\12\\-75\\13\end{array}$                                                                                                                                                   | 360.861<br>360.860<br>366.561<br>369.285<br>369.237<br>371.837<br>371.796<br>374.390<br>374.392                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $\begin{array}{c} 66.586\\ 66.586\\ 79.458\\ 79.458\\ 86.280\\ 93.076\\ 93.076\\ 100.494\\ 100.494\end{array}$                                                                                                                                                                                                                             | 53<br>55<br>-35<br>16<br>-67<br>58<br>-103<br>10<br>65<br>59<br>22                                                                                                                                        | 5557-4013-7253-10945751                                                                                                                                                                                       |
|  |                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                   |                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                      |                                                                                                                                                                                                                            | abs me                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | an deviations:                                                                                                                                                                                                                                                                                                                             | 30                                                                                                                                                                                                        | 30                                                                                                                                                                                                            |

 $^{a}\Delta P_{i}^{s} = (P_{exp}^{s} - P_{calc}^{s})_{i}$  where  $P_{calc}^{s}$  has been obtained from I, eq 1, and II, eq 2. <sup>b</sup> Static apparatus. <sup>c</sup> Ebulliometer.

Journal of Chemical and Engineering Data, Vol. 39, No. 4, 1994 761

Table 3. Coefficients of the Antoine Equation<sup>a</sup>

|       | A            | В         | С       |
|-------|--------------|-----------|---------|
| MTBE  | 6.070 343    | -1158.912 | -43.200 |
| ETBE  | 6.073~724    | -1206.874 | -49.190 |
| IPTBE | 5.899 486    | -1164.675 | -61.300 |
| TAME  | $6.067\ 822$ | -1256.258 | -50.100 |
| TAEE  | $5.926\ 451$ | -1218.389 | -63.940 |

<sup>a</sup> The range of validity of eq 1 is the same as the temperature range presented in Table 2.

Table 4. Coefficients of the Wagner Equation

|       | a      | Ь        |       | с      |           | d      | $T_{o}/K$           | $\ln(P_{o}/kPa)$ |  |
|-------|--------|----------|-------|--------|-----------|--------|---------------------|------------------|--|
| MTBE  | -7.000 | 83 0.746 | 099 - | -1.039 | 04 -6.04  | 10 79  | 497.10 <sup>a</sup> | 8.14175ª         |  |
| ETBE  | -7.999 | 60 3.343 | 69 -  | -5.064 | 35 0.34   | 16 046 | $514.00^{b}$        | 8.03606          |  |
| IPTBE | -8.668 | 56 4.731 | 07 -  | -6.257 | 40 - 0.08 | 31 435 | $528.40^{b}$        | 7.93868          |  |
| TAME  | -7.088 | 46 0.848 | 877 - | -2.075 | 12 - 2.37 | 70 182 | 534.41 <sup>b</sup> | 8.03770          |  |
| TAEE  | -7.225 | 16 1.496 | 581 - | -3.188 | 41 - 2.94 | 17 836 | 552.67              | 7.938685         |  |

<sup>a</sup> Reference 1. <sup>b</sup> Average of predicted critical properties by the Ambrose and Joback methods.



**Figure 1.** Residuals for methyl *tert*-butyl ether,  $\Delta \log P_i^s$  (=log- $(P_{i_{exp}}^{s}/P_{i_{calc}}^{s}))$ , versus  $T_{r}$  (= $T/T_{c}$ ) from eq 2 and values given by other researchers: +, Ambrose et al. (1); \*, Wu et al. (9); O, Daubert et al. (10);  $\triangle$ , Aim and Ciprian (11);  $\blacklozenge$ , Zigmundova et al. (15); >, Zong et al. (16); ■, Mato et al. (20), (21); ●, Acosta et al. (22);  $\diamond$ , Jin et. al. (23);  $\Box$ , Wilding et al. (24);  $\triangleleft$ , Leu et al. (25);  $\bowtie$ , Wang et al. (26);  $\times$ , this work.

shown that if no reliable value for the critical pressure is available, the missing information can also be fitted as an additional parameter. This was done when fitting the coefficients for the substances with estimated critical temperature and pressure, but no better results were obtained. The coefficients of the Wagner equation were obtained by constrained fit so that the curve  $\Delta h/\Delta z$  (= $RT^2$ d ln  $P_i$ '/dT) presents a minimum between  $0.8 < T_r < 1.0$ . No other constraint was introduced. This was done to assure an extrapolation of the vapor pressure from the range given in Table 2 to the critical point with fair accuracy. Table 2 shows that the quality of the Wagner equation is superior to that of the Antoine equation in almost all the cases.

The residuals  $\Delta P_i^s = (P_{exp}^s - P_{calc}^s)_i$  in Table 2 are based on eqs 1 and 2 with the parameters presented in Tables 3 and 4, respectively.

No vapor pressure data of IPTBE and TAEE were found in the literature. Therefore, only the measured vapor pressure data of MTBE, TAME, and ETBE can be compared with the results of other researchers. The residuals given as  $\Delta \log P_i^{s} = \log(P_i^{s} \exp/P_i^{s} \operatorname{calc}))$  from eq 2 using the coefficients of Table 4 versus  $T_r$  are plotted in Figures 1–3 for MTBE, ETBE, and TAME, respectively.

In all the cases, except for the discrepancy with the values of Daubert et al. (10) and Daubert (12), good agreement is obtained with the results of other researchers especially for MTBE and TAME. For ETBE only the



**Figure 2.** Residuals for ethyl *tert*-butyl ether,  $\Delta \log P_i^s (= \log(P_i^s \exp))$  $P_{i \text{ calc}}^{s}$ )), versus  $T_{r}$  (= $T/T_{c}$ ) from eq 2 and values given by other researchers:  $\bigcirc$ , Daubert (12); +, Rarey (13); ×, this work.



**Figure 3.** Residuals for *tert*-amyl methyl ether,  $\Delta \log P_i^s$  (=log- $(P_{i_{exp}}^{s}/P_{i_{calc}}^{s}))$ , versus  $T_{r}$  (= $T/T_{c}$ ) from eq 2 and values given by other researchers: O, Cervenkova and Boublik (19); ×, this work.

results of Daubert are available. It has to be mentioned that water contamination on the order of 0.1 mol % in the ethers causes a difference in the measured pressure on the order of +20% at low temperatures (13).

The coefficients of the Wagner equation should be revised as soon as experimental values for the critical properties are availabe.

#### Acknowledgment

The authors acknowledge the assistance given by Ms. Bärbel Meents and Mr Rainer Bölts in purifying the chemicals and the assessment of their purity.

## **Literature Cited**

- (1) Ambrose, D.; Ellender, J. H.; Sprake, C. H. S.; Townsend, R. J. Chem. Thermodyn. 1976, 8, 165. (2)
- Dallinga, L.; Schiller, M.; Gmehling, J. J. Chem. Eng. Data 1993,  $38.14\bar{7}$
- Kolbe, B.; Gmehling J. Fluid Phase Equilib. 1985, 23, 213.
- (4) Antoine, C. C. R. Acad. Sci. 1888, 107, 681-684, 836.
- Ambrose, D. J. Chem. Thermodyn. 1986, 18, 45, (5)(6)
- Joback, K. G.; Reid, R. C. Chem. Eng. Commun. 1987, 57, 233.
- (7)Ambrose, D. NPL Rep. Chem. 1978, 92.
- Ambrose, D. NPL Rep. Chem. 1979, 98. (8)
- Wu, H. S., Pividal, K. A.; Sandler, S. I. J. Chem. Eng. Data 1991, (9)36, 418.
- (10) Daubert, T. E.; Jalowka, J. W.; Goren, V. AIChE Symp. Ser. 1987, 83 (256), 128.
- (11) Aim, K.; Ciprian, M. J. Chem. Eng. Data 1980, 25, 100.
  (12) Daubert, T. E. AIChE Data Ser. 1991, 1, 80.
- (13) Rarey, J. R. (Universität Oldenburg) Private comunication, 1993. Churkin, V. N.; Gorshkov, V. A.; Pavlov, S. Yu Prom-St. Sint. (14)Kauch. 1979, 4, 2
- (15) Zikmundova, D.; Matous, J.; Novak, J. P.; Kubicek, V.; Pick, J. Fluid Phase Equilib. 1990, 54, 93.
- (16) Zong, Z.; Yang, X.; Zheng, X. Ranliao Huaxue Xuebao 1987, 15, 32.
- (17) Palczewska-Tulinska, M.; Wyrzykowska-Stankiewicz, D. Fluid Phase Equilib. 1990, 54, 57.
- Pavlova, I. P.; Saraev, B. A. Prom-St. Sint. Kauch. 1981, 5, 2.
- (19) Cervenkova, I.; Boublik, T. J. Chem. Eng. Data 1984, 29, 425.

- (20) Mato, F. A.; Berro, C.; Peneloux, A. J. Chem. Eng. Data 1991, 36, 259.
- 30, 203.
  (21) Mato, F. A.; Berro, C. J. Chem. Eng. Data 1991, 36, 262.
  (22) Acosta, R. G.; Rodriguez, E. R.; de la Guardia, P. M. Rev. Inst. Mex. Petrol. 1980, 12, 40.
  (23) Jin, Z.-L.; Lin, H.-M.; Greenkorn, R. A. AIChE Symp. Ser. 1985, 244, 1
- 244, 1. (24) Wilding, W. V.; Wilson, L. C.; Wilson. AIChE Symp. Ser. 1987,
- (25) Leu, A. D.; Chen, C. J.; Robinson, D. B. AIChE Symp. Ser. 1989, 271, 85.

(26) Wang, Y.; Ton, A.; Su Y.; Yang, Z. Shiyou Huagong 1989, 18, 442.

Received for review January 31, 1994. Accepted May 16, 1994.\* The authors would like to thank the companies described in Table 2 for delivering the substances free of charge and Deutscher Akademischer Austauschdienst for supporting the stay of M.A.K. at the University Oldenburg.

\* Abstract published in Advance ACS Abstracts, August 15, 1994.